Category

Design Reuse

If You Build It They Will come

If You Build It (Using Machine Learning) Will They Come?

By Artificial Intelligence and Machine Learning, Design Reuse, PLM One Comment

Autodesk Claims Machine Learning Technology Will Transform 3D Engineering

Autodesk announced recently the availability of a shape-based search capability in A360. A blog article titled How Machine Learning Will Transform 3D Engineering describes the new capability, called Design Graph, as a “Google search-like functionality for the world of 3D models.”

Google search functionality is probably the wrong metaphor for 3D search. Web search is fundamentally text based, whereas searching for a part or a design requires a combination of textual and geometric terms and attributes, and sufficiently deep domain semantics. In fact, the blog article makes the very same argument later, describing Design Graph’s purpose to “identify and understand designs based on their inherent characteristics—their shape and structure—rather than by any labeling (tags) or metadata” (i.e. not Google-like).
Read More

Knowledge Based Product Development

By Design Reuse, Innovation, Internet of Things (IoT), Manufacturing, PLM No Comments

Lack of ongoing insight into product operation and the interaction with users is a major contributor to the persistence of a knowledge gap that plagues many product organizations, reduces efficiency and stifles innovation.

What drives this knowledge gap? A number of general trends impact companies in most industry sectors and product types.

  • Technology complexity and, in particular, the increased reliance on complex embedded control software.
  • Elongated and fragmented supply chains that support global operations.
  • Meeting global markets demand results in lower volume of configuration-specific product instances.
  • Accelerated egress of an aging workforce from the workplace.

The impact of the growing knowledge gap is most recognized and frequently discussed in the context of equipment maintenance and repair, which is a knowledge intensive activity. Another area were closing the knowledge gap has significant benefits is engineering change management.

Organizations often speak about the need to collect and formalize “tribal knowledge” to close the gap between the knowledge needed to perform a complex takes or reach a decision, and the knowledge and experience the person performing this task has access to.

In a previous article I discussed the severe myopia that exists in many product companies: most engineering organizations lose sight of their products once they are sold or installed in the field. In some manufacturing companies this happens even earlier, during the transition to manufacturing engineering and before the product enters volume production. Once a product is in use, there is only a trickle of information in the form of service records and warranty claims. But many organizations dismiss critical maintenance and warranty information as merely operational and cost of doing business and aren’t leveraging its full potential.

Knowledge Based Product Development

Product organizations cannot have a true and complete view of a product and how customers are using it unless they can continue to observe it while it is in use. They must monitor and analyze products throughout their lifecycle, gauge their performance, quality and uptime, how users are interacting with the products, and how well they meet market expectations overall.

This rich multidisciplinary insight extends beyond design information. It includes multifaceted data from a variety of sources and disciplines and includes manufacturing, supply chain, filed operations and service and maintenance. The data can be aggregated from multiple sources, including real-time data such as IoT, maintenance record and customer experience.

The aggregation, classification and analysis of this data provides critical insight to embellish and enhance an organizational knowledge library for subsequent iterations of product design, manufacturing process engineering, and service planning.  reinforced by analytics, case-based reasoning (CBR), and similar tools to collect, analyze and vet information.

Product organizations cannot afford operating with blinds that prevent visibility to downstream processes. They should not ignore the value of information collected throughout the product lifecycle. They must establish knowledge processes, governed by PLM software, to maximize the utility and benefit of product lifecycle information.

(Photo: FreeDigitalPhotos.net)

To Reuse or Not To Reuse Parts, That is the Question

By Automotive, Design Reuse, Manufacturing, PLM One Comment

Design Reuse

For years I have been critical of the automotive industry and its overzealous and careless tendency to design new parts instead of reusing existing designs, inventory parts and suppliers.  The Rationale to resist the temptation to innovate and reuse tried and proven parts is broad and multifaceted. Among the chief arguments:

  • Accelerate time to market and reduce the number and severity of ECOs
  • Reuse tooling and manufacturing processes
  • Improve quality and have better estimation of volume manufacturing ramp up, service load and warranty costs
  • Reduce the need to recreate work instructions, remove and replace procedures and related documentation
  • Lower manufacturing and final product cost
  • Reduce inventory and related costs

A useful way to look at this is that in addition to the benefits of reusing a physical commodity, design reuse promotes knowledge reuse, which has broader and longer lasting benefits.

The argument for design and part reuse gets a bit more involved when we look beyond small parts and subassemblies, which the average consumer doesn’t care about. What about systems that represent the brand identity, such as the engine or transmission? Do consumers know and care whether an engine is exclusive to the brand? How does this knowledge influence buying decisions?

A recent study by Automotive News of auto dealers offers an interesting perspective on the topic. The study indicates that consumers are split almost evenly about how they feel about the brand exclusivity of the engine in the car they’re shopping for and how this knowledge influences their busying decision.

Interestingly, according to the study, consumers care much more about the brand exclusivity of the transmission: more than 50% of consumers now and care whether the car’s transmission is exclusive to that brand.

An even more surprising finding, which, quite frankly, make me somewhat leery about the reliability of this very small (n= 169) study, is that 71% of consumers know and care whether the axles are exclusive to that brand. Or, at least, this is what auto dealers believe.

For some reason, the study did not ask about common car chassis that might have a stronger impact on consumer decisions, because it makes it easier to pitch one brand against the other. A good example is Volkswagen’s A4 platform that is used in a range of vehicles from the luxury sporty Audi TT to the lower end SEAT and Skoda. While most consumers are not aware of the pervasive use common platforms, will they change their mind if they did?

The fidelity of the study’s findings aside, it’s clear that line executives and designers face a dilemma: how far can they reuse parts and systems before they start diluting the brand identity. But finding the right mix of model-exclusive and common design, especially lower level assemblies and parts, is an important step in improving operations while maintain brand’s identity and integrity.

Design Reuse: Reusing vs. Cloning and Owning

By Design Reuse, Manufacturing, PLM One Comment

Reusing vs. Cloning and Owning

As I am preparing for my presentation and panel discussion at the Product Innovation Congress in San Diego next week, I am speaking with colleagues and experts in all things PLM. I recently spoke with Charlie Krueger from BigLever on product line engineering (PLE) and how some organizations and individuals practice design reuse.

We often encounter instances in which the engineering team makes use of an existing design or an inventory part in a new product. They assign it a new part number and sometimes a new name, and move it to the new system’s bill of materials (BOM), and from that point onward the part start a product lifecycle of its own. Charlie terms this approach “cloning and owning.”

Obviously, that’s not what we mean when advocate design reuse.

In a recent blog on design reuse I discussed the importance of reuse not only for the more obvious and better understood reasons such as accelerating time to market and reducing inventory costs but, more significantly, for the ability to reuse design, manufacturing and service knowledge associated with these physical objects.

If commonly used and shared parts and subsystems carry separate identities, then the ability to share lifecycle information across products and with suppliers is highly diminished, especially when products are in different phases of their lifecycle. In fact, the value of knowledge sharing can be greater when it’s done out of sync with lifecycle phase. Imagine, for example, the value of knowing the manufacturing ramp up experience of a subsystem and the engineering change orders (ECOs) that have been implemented to correct them before a new design is frozen. In an organization that practices “cloning and owning”, it’s highly likely that this kind of knowledge is common knowledge and is available outside that product line.

An effective design reuse strategy must be built upon a centralized repository of reusable objects. Each object—a part, a design, a best practice—should be associated with its lifecycle experience: quality reports, ECOs, supplier incoming inspections, reliability, warranty claims, and all other representations of organizational knowledge that is conducive and critical to making better design, manufacturing and service related decisions.

  • Organizations should strive to institute a centralized product management strategy that consolidates and exploits PLM and PDM data, ERP systems, and, in all likelihood, a myriad of informal and unstructured emails and spreadsheets.
  • To maximize the value of design reuse, information must be shared across product lines independent of the lifecycle phase of each product. In particular, incorporate late-stage knowledge such as service and warranty information in design decisions of new products.
  • Effective reuse would benefit from the ability to decompose system architectures differently. In addition to structuring product information using traditional engineering and manufacturing BOMs, encapsulating and organizing information by feature families and configurations, such as in the methodology behind PLE, is highly effective, especially in complex product architectures.

On Design Reuse

By Automotive, Aviation and Aerospace, Design Reuse, PLM No Comments

For years I have been preaching for higher level of design reuse in the automotive industry — an industry that inexplicably insists that every bolt, bracket and belt has to be unique to each model. And from time to time, a part used in one model year does not fit other model years.pReusing parts is not only helping reduce manufacturing and dealer inventory, but can also accelerate product design, improve quality and reduce manufacturing cost.

The automotive industry is slowly coming to the realization that it needs to do a much better job in focusing on meaningful and differentiating innovation and reuse existing design whenever possible. Two OEMs that I often single out as leading the pack in designing multiple models based on a single platform that allows high level of reuse are Ford and Volkswagen. But recently I found out first hand that VW does not always follow what it preaches.

My brand new Passat had a minor pressure leak in the fuel system that was probably caused by a faulty fuel filler cap. The dealer’s service department had a Passat cap in inventory, but, as it turned out, Volkswagen engineeres decided to use different fuel caps in cars equipped with 2L engine and in models using larger engines; it did not fit my car with a 3.6L V6 engine.

I am really curious to understand why VW engineers were not able to use the same fuel filler cap on all 2012 Passats (actually, why not the same cap in all VW and Audi models?)

The solution was to commandeer a cap from one of the new cars in inventory.  The new cap seems to have solved the problem. Thanks for asking.